Syntax-Directed Attention for Neural Machine Translation

نویسندگان

  • Kehai Chen
  • Rui Wang
  • Masao Utiyama
  • Eiichiro Sumita
  • Tiejun Zhao
چکیده

Attention mechanism, including global attention and local attention, plays a key role in neural machine translation (NMT). Global attention attends to all source words for word prediction. In comparison, local attention selectively looks at fixed-window source words. However, alignment weights for the current target word often decrease to the left and right by linear distance centering on the aligned source position and neglect syntax-directed distance constraints. In this paper, we extend local attention with syntax-distance constraint, to focus on syntactically related source words with the predicted target word, thus learning a more effective context vector for word prediction. Moreover, we further propose a double context NMT architecture, which consists of a global context vector and a syntax-directed context vector over the global attention, to provide more translation performance for NMT from source representation. The experiments on the large-scale Chinese-to-English and English-to-Germen translation tasks show that the proposed approach achieves a substantial and significant improvement over the baseline system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Refinement for Machine Translation

Existing machine translation decoding algorithms generate translations in a strictly monotonic fashion and never revisit previous decisions. As a result, earlier mistakes cannot be corrected at a later stage. In this paper, we present a translation scheme that starts from an initial guess and then makes iterative improvements that may revisit previous decisions. We parameterize our model as a c...

متن کامل

Supervised Attentions for Neural Machine Translation

In this paper, we improve the attention or alignment accuracy of neural machine translation by utilizing the alignments of training sentence pairs. We simply compute the distance between the machine attentions and the “true” alignments, and minimize this cost in the training procedure. Our experiments on large-scale Chinese-to-English task show that our model improves both translation and align...

متن کامل

Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder

Most neural machine translation (NMT) models are based on the sequential encoder-decoder framework, which makes no use of syntactic information. In this paper, we improve this model by explicitly incorporating source-side syntactic trees. More specifically, we propose (1) a bidirectional tree encoder which learns both sequential and tree structured representations; (2) a tree-coverage model tha...

متن کامل

Neural Machine Translation with Source-Side Latent Graph Parsing

This paper presents a novel neural machine translation model which jointly learns translation and source-side latent graph representations of sentences. Unlike existing pipelined approaches using syntactic parsers, our end-to-end model learns a latent graph parser as part of the encoder of an attention-based neural machine translation model, and thus the parser is optimized according to the tra...

متن کامل

Graph Convolutional Encoders for Syntax-aware Neural Machine Translation

We present a simple and effective approach to incorporating syntactic structure into neural attention-based encoderdecoder models for machine translation. We rely on graph-convolutional networks (GCNs), a recent class of neural networks developed for modeling graph-structured data. Our GCNs use predicted syntactic dependency trees of source sentences to produce representations of words (i.e. hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04231  شماره 

صفحات  -

تاریخ انتشار 2017